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Abstract Wildfire smoke influences on air quality and atmospheric chemistry have been underscored by
the increasing fire prevalence in recent years, and yet, the connection between fire, smoke emissions,
and the subsequent transformation of this smoke in the atmosphere remains poorly constrained. Toward
improving these linkages, we present a new method for coupling high time‐resolution satellite observations
of fire radiative power with in situ observations of smoke aerosols and trace gases. We apply this
technique to 13 fire plumes comprehensively characterized during the recent FIREX‐AQ mission and
show that changes in fire radiative power directly translate into changes in conserved smoke tracers
(CO2, CO, and black carbon aerosol) observed in the downwind smoke plume. The correlation is particularly
strong for CO2 (mean r > 0.9). This method is important for untangling the competing effects of
changing fire behavior versus the influence of dilution and atmospheric processing on the downwind
evolution of measured smoke properties.

1. Introduction

Wildfire activity in the Western United States causes poor air quality, adverse human health impacts, and
substantial economic costs (Jaffe et al., 2008; Kochi et al., 2010; Liu et al., 2015; Lu et al., 2016; Reid
et al., 2016; Stavros et al., 2014). The frequency and intensity of these fires are expected to increase in the
future due to a combination of growing human settlement at the wildland urban interface and climate
change (Abatzoglou & Williams, 2016; Hammer et al., 2009; Mell et al., 2010; Theobald & Romme, 2007;
Westerling et al., 2006). Consequently, it is essential to understand the composition and magnitude of aero-
sol and trace gas emissions fromwildland fires and prescribed fires to quantify the effects of fire emissions on
air quality and climate.

Fires emit a complex and highly variable mixture of gases and aerosols that can considerably alter atmo-
spheric composition and tropospheric chemistry over a wide range of spatial and temporal scales (Bond
et al., 2013; Goldammer et al., 2008; Langmann et al., 2009; Urbanski, 2014). Environmental conditions at
the location of the fire, such as local weather and fuel structure, influence the composition and magnitude
of these emissions (Loehman et al., 2014; Thonicke et al., 2010). Wildfires generally have a pronounced diur-
nal cycle directly related to weather conditions, with activity peaking early in the afternoon and diminishing
after sunset (Ichoku et al., 2008; Saide et al., 2015; Zhang & Kondragunta, 2008).

Fire emissions inventories are an essential tool for understanding the spatiotemporal distribution of fire
emissions on a regional to global scale. The resolution of commonly used fire emissions inventories
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diverges considerably depending on their intended use and the methodology used in their development. As a
result, considerable irregularities exist among fire emissions inventories in the estimatedmagnitude, compo-
sition, and distribution of emissions in space and time (Larkin et al., 2014; Li et al., 2019; Liu et al., 2020; Shi
et al., 2015). In general, these differences can be attributed to variations in the approach used to quantify
burned area, fuel loads, combustion completeness, and emission factors (Kasischke & Penner, 2004).
Quantitative comparisons between different fire emissions inventories remain scarce due to the variable
transport models used in each study and the spatial/temporal averaging used for comparison to observations
(Liu et al., 2020). However, a few recent studies have shown significant variability in aerosol emissions from
fire emissions inventories and large discrepencies between observations and fire emissions inventory driven
predictions of surface aerosol concentrations (Pan et al., 2020; Xie et al., 2020).

Most fire emissions inventories employ remote sensing observations of fire parameters such as burned area,
active fire counts, and fire radiative power (FRP) from instruments onboard polar orbiting satellites, includ-
ing the Moderate Resolution Imaging Spectroradiometer (Ichoku & Ellison, 2014; Kaiser et al., 2012; Pierce
et al., 2007; van der Werf et al., 2017; Wiedinmyer et al., 2011) and the Visible Infrared Imaging Radiometer
Suite (Ahmadov et al., 2017). Typical overpass times for the satellites hosting these instruments occur only
twice daily over North America at ~1 a.m./p.m. or at ~10 a.m./p.m. local time (Li et al., 2018). Due to this
limited temporal coverage of fire observations in a given location, some fire emissions inventories or
models supplement the diurnal cycle of emissions using FRP observations from geostationary satellites
(Andela et al., 2015; Li et al., 2019; Mota & Wooster, 2018; Mu et al., 2011; Zhang et al., 2012) or assume a
Gaussian distribution of daily FRP (Kaiser et al., 2009).

Geostationary satellite instruments, such as the Geostationary Operational Environmental Satellite (GOES)
Advanced Baseline Imager (ABI), observe FRP for a given fire over the course of the entire diurnal cycle and
at a much finer temporal resolution than their polar‐orbiting counterparts. While the temporal resolution is
higher, this comes at the expense of providing only hemispheric coverage and decreased spatial resolution
which increases detection biases (Li et al., 2020; Schmidt, 2019). GOES ABI imagery provides a snapshot
of FRP across the continental United States every 5 min and full disk FRP every 10 min (https://www.
goes‐r.gov/spacesegment/abi.html) at a relatively coarse spatial resolution of 2 km (Schmidt, 2019) and
offers the opportunity to investigate both the diurnal cycle of fire activity and short‐term changes in fire
behavior that could have important implications for fire emission estimates (Li, Zhang, et al., 2019;
Schmidt, 2019; Zhang & Kondragunta, 2008).

There is a need to connect spatially coarse, remotely sensed fire observations that have more widespread
coverage and lower time resolution with in situ point source observations that have much higher spatial
and temporal resolution but much lower overall coverage to achieve a more comprehensive understanding
of fire behavior and emissions. Rather than using GOES FRP observations to directly estimate emissions
using a top‐down approach (Freeborn et al., 2008; Ichoku et al., 2008; Wooster et al., 2003), we use 5‐min
resolution, near real‐time GOES FRP observations to quantify the relationship between FRP and in situ
measurements of fire emissions. We validate this technique using airborne observations of individual fires
sampled during the recent Fire Influence on Regional to Global Environments and Air Quality
(FIREX‐AQ) field campaign. FIREX‐AQ measured the concentrations, composition, and properties of
smoke from wildfires and prescribed fires in the Continental United States during the summer of 2019
using the National Aeronautics and Space Administration (NASA) DC‐8 aircraft. Here we focus on the
Western U.S. portion of the campaign. The GOES FRP observations are compared to the airborne in situ
measurements of relatively long‐lived species emitted by fires, including CO2, CO, and black carbon (BC)
mass. This work promises significant improvements for resolving the temporal resolution of emissions in
new and existing daily fire emissions inventories and smoke forecasting model frameworks.

2. Methods
2.1. GOES FRP
2.1.1. GOES Diurnal Cycle of FRP
FRP is an important quantitative indicator of fire activity and how it changes over the study period. We gen-
erate an average diurnal cycle of FRP for all theWestern U.S. wildland fires in FIREX‐AQ by examining each
sampled fire individually using FRP observations from the GOES‐16 and GOES‐17 ABI L2 + Fire/hot spot
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Detection and Characterization product from the Wildfire Automated
Biomass Burning Algorithm processing system (Schmidt, 2019). The
FRP data products for the wildland fires specific to FIREX‐AQ are
archived in the NASA data archive. The Wildfire Automated Biomass
Burning Algorithm/Fire/hot spot Detection and Characterization product
provides FRP for fires in the continental United States with a spatial reso-
lution of 2 km and a temporal resolution of 5 min. Previous studies have
found the diurnal cycle of fire activity can be modeled as a Gaussian
distribution or a Fourier series (Andela et al., 2015; Giglio, 2007; Roberts
et al., 2009; Zhang & Kondragunta, 2008). In this study, we choose to
use a bimodal Gaussian distribution as opposed to one with a single mode,
because the bimodal fit had a slightly higher correlation with the
observation‐driven diurnal cycle of FRP for the FIREX‐AQ fires (support-
ing information Table S1). For each individual fire (spatially defined in
the next paragraph), we derive the average diurnal cycle of FRP, defined
as the fit to the total FRP (in 5‐min intervals over the course of a 24‐hr day
in local time) averaged over every day the fire was actively burning
(Figure 1). Each fire's average diurnal cycle is used to fill in observational
data gaps when cloud cover or thick smoke prohibits detection. The func-
tional form of the bimodal Gaussian distribution is

FRP tð Þ ¼ ∑2
i¼1

ai
σi

ffiffiffiffiffiffi
2π

p e
−

t − ti
σi
ffiffi
2

p
� �2� �

; (1)

where ai is the FRP of mode i in units of MW, ti is the median time of
mode i in hours from midnight (local time), and σi is the standard devia-
tion of mode i in hours. GOES FRP observations are included if their
centroid is within 4 km of the final burned area perimeter defined by
the Geospatial Multi‐Agency Coordination Wildland Fire Perimeters
database (Walters et al., 2011). The size of the buffer is double the dia-
meter of the fixed grid resolution from GOES in order to capture all
detections of an individual fire.

To quantify the diurnal cycle of FRP for a single fire on an individual day,
any time gaps in GOES FRP observations were filled using the average
Gaussian model scaled to the mean of the available FRP observations

for each fire on that day. Observational gaps often occur because of cloud cover, and on average, this
occurred 34% of the time for the fires included in this analysis. The model fit is only used to interpolate miss-
ing FRP observations for days with observations of FRP > 0 spanning at least 6 hr out of the entire 24‐hr
(local time) period in order to avoid overestimating FRP. In practice, this data reconstruction step has neg-
ligible impact on the FRP time series for fires where data coverage is good (e.g., the Williams Flats fire high-
lighted in Figures 2 and S1); however, for the few fires with substantial missing observations due to cloud
cover or thick smoke (e.g., Castle fire), this step is more impactful. We note fire behavior can be influenced
by cloud cover, and our approach may introduce some bias when filling in gaps using a diurnal distribution
built under clear or mostly clear skies.
2.1.2. Fuels and Fire Weather
To investigate the influence of fuel type on the mean diurnal cycle of FRP, we grouped fires together that
shared similar fuel loading and structure according to the Fuel Characteristics and Classification System
(FCCS) (Ottmar et al., 2007). The dominant ecosystem type is defined as the FCCS fuel class that encom-
passes at least 75% of the burned area defined by the final Geospatial Multi‐Agency Coordination perimeter
at the end of the fire's life cycle. It should be noted that only the dominant fuel type per fire was used for clas-
sification in this study, although each fire burned through a wide variety of fuel types, and different ratios of
fuel types on different burn days are neglected. The fires included in this analysis are grouped into one of the
three following fuel categories: grass/shrublands, forest/woodlands, and mixed. The mixed category is

(a)

(b)

(c)

Figure 1. Bimodal Gaussian model fit of average GOES diurnal cycle
(over the entire lifetime of the fire) for each fire sampled during
FIREX‐AQ. Classified by dominant landcover type using the final GeoMAC
burned area perimeter. Model fit to FRP shown as a probability distribution
over the course of a day in local time. (a) shows fires classified as grass/
shrubland, (b) shows fires classified as forest/woodland, and (c) shows
fires classified as mixed.
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defined as a combination of grass/shrublands and forest/woodlands for fires with less than 75% of the
burned area encompassed by either grass/shrubland or forest/woodlands. Examples of specific FCCS fuel
classes used in each grouping is shown in Table S2. Daily fire weather danger levels are obtained from the
National Fire Danger Rating System provided by the U.S. Forest Service (Bradshaw et al., 1983).

Fires in grass/shrublands are often considered to be fuel limited, while forest fires can be considered ignition
limited because of generally higher fuel moisture. The diurnal cycle of fire activity begins around the same
time for all ecosystems considered (12:00 hr local time) but extended much later into the night (24:00 hr) in
mixed ecosystems compared to grass/shrublands or forest/woodlands (20:00 hr), with the exception of the
Horsefly fire (Figure 1). Incident reports of Horsefly indicate the fuels include a significant amount of dead
and down trees caused by bark beetle damage (https://inciweb.nwcg.gov/incident/6502/). The longest diur-
nal combustion period occurs in mixed fuels and forests with high proportions of beetle killed dead and
down trees. One explanation for this behavior is the finer fuels allowed for more rapid fire spread and helped
to dry out the larger dead fuels. Simultaneously, smoldering combustion in coarse woody debris, including
beetle killed trees, is known to continue well into the night (Albini & Reinhardt, 1995; Hyde et al., 2011). In
all of the fires categorized as havingmixed fuels, the invasive species cheatgrass was a component of the fuels
in the burned area perimeter (24% Williams Flats, 12% North Hills, and 4% Ridgetop). Cheatgrass enhances
fire size and frequency in the Western United States and can outcompete native vegetation after fire, which
induces a vicious cycle where future wildfires propagate cheatgrass expansion (Balch et al., 2013; Kerns
et al., 2020; Menakis et al., 2003).

2.2. Comparison With In Situ Observations
2.2.1. Aircraft Aerosol and Trace Gas Observations
We compare the high‐temporal resolutionGOESFRP product to the airbornemeasurements of CO2, CO, and
refractory BC aerosol concentrations in the FIREX‐AQ smoke plumes. The DC‐8 aircraft flew through each

Figure 2. Left panel shows a map of the DC‐8 flight track on 7 August 2019 for the first set of orthogonal transects through the Williams Flats smoke plume.
Colors correspond to the CO2 mixing ratios from DC‐8 measurements. The average wind speed for the transects shown is 7.6 ± 1.6 m/s, and the average
wind direction is 263 ± 10°. Right panel shows a time series of CO2, CO, and BC observations from the DC‐8 (a–c) that correspond to the transects shown in the
left panel and are highlighted by average smoke age. (d) shows GOES FRP integrated over the same time interval represented by the smoke plume transects
and aligned in time with the observations.
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wildfire smoke plume in a series of orthogonal plume transects starting near the fire and proceeding down-
wind as far as practical given mission objectives and flight limitations (Figure 2). An example set of plume
transects for the Williams Flats fire in Washington State is shown in Figure 2. CO2 mixing ratio measure-
ments are obtained using a non‐dispersive infrared (IR) spectrometer (LICOR, Inc. Model 7,000) adapted
for aircraft measurements in a method similar to Vay et al. (2003), while COmixing ratios are obtained from
mid‐IR laser absorption spectrometry (Sachse et al., 1991). Both species were calibrated in‐flight with stan-
dards from the National Oceanic and Atmospheric Administration Earth Science Research Laboratories
(NOAA ESRL) traceable to World Meteorological Organization (WMO) scales (CO2:X2007; CO:X2014A).
Refractory BC mass concentrations appropriate for most of the accumulation mode were provided by a
Single Particle Soot Photometer (SP2, Droplet Measurement Technologies). CO2 is chosen because it is the
most dominant trace gas species emitted from fires (Andreae &Merlet, 2001). CO and BC are chosen for com-
parison because they are tracers of primarily smoldering and flaming fire processes (Sommers et al., 2014;
Urbanski, 2014), respectively, and are conserved over the relatively short (hours‐long) time scales of the
DC‐8 sampling. The modified combustion efficiency (MCE) is a metric commonly used to determine relative
contributions from smoldering and flaming fire processes to emissions (Ward & Radke, 1993). MCE is calcu-
lated using the following equation:

MCE ¼ 1
mCO=CO2 þ 1

; (2)

where mCO/CO2 is the slope of the York regression between excess mixing ratios (background subtracted)
of CO and CO2.
2.2.2. Relationships Between In Situ Measurements and GOES FRP
To compare in situ trace gas and aerosol observations with GOES FRP, we calculate the smoke age as the
difference between when the smoke was emitted and when it was sampled by the DC‐8, using the air-
craft‐measured wind speeds and assuming straight line horizontal advection between the fire and aircraft
positions with uniform winds for all transects of a single plume. The average wind speed for all fires and
all transects is 8 ± 3 m s−1, and the typical wind direction is westerly. Example wind speed and direction
are given in Table S3 for the transects shown in Figures 2 and S2. The vertical transport time of the plume
is neglected. We calculate the time of emission as the average time of sampling by the DC‐8 aircraft across
a single transect minus this smoke age.

We quantify the temporal variability of CO2 and CO mixing ratios as well as the BC mass concentration by
integrating the DC‐8 measurements across each smoke plume transect following the methodology of
Yokelson et al. (2007). For each orthogonal transect through the FIREX‐AQ smoke plume, we integrate
excess mixing ratios of CO2, CO, and BC across the entire length of the plume cross section. Baseline concen-
tration values used for the background subtraction are calculated as the 5‐s‐averaged mixing ratios of each
species starting 1 s before and after each transect. We then calculate the relative rate of change of the aerosol
and trace gas species and MCE for each transect, which we expect should scale proportionately with the rate
of change of the FRP, after accounting for the smoke plume age, Δt, as follows:

∂ ln ΔXð Þ
∂t

����
tþΔt

∝
∂ ln FRPð Þ

∂t

����
t

; (3)

where ΔX is the integrated excess mixing ratio of species X and t is the time corresponding to the mea-
sured FRP and estimated time of smoke emission. In this study, we compute the approximate derivative
by differencing the DC‐8 measurements across two adjacent aircraft transects. For each DC‐8 plume trans-
ect, k (and corresponding time interval at the fire, j), the scaling relationship is calculated as

1
ΔXk

·
ΔXk −ΔXk − 1

tk − tk − 1
∝

1
ΔFRPj

·
ΔFRPj −ΔFRPj − 1

tj − tj − 1
; (4)

where ΔFRPj is the integrated FRP over the relatively short time interval represented by the aircraft sam-
pling time minus the smoke age (tj = tk − Δtk). Implicit in Equation 4 is that the smoke age can be used
to extrapolate from the aircraft sampling time back to the time of emission at the fire. Furthermore,
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we assume that the conserved species in the plume do not continue to evolve between adject transects
(i.e., Δtk − Δtk − 1 = 0). While this assumption may be reasonably valid for the conserved tracers exam-
ined here whose plume evolution is mainly impacted by dilution, it is likely to break down for other
extensive aerosol and trace gas variables that are strongly influenced by photochemical processing, coagula-
tion, and gas‐particle partitioning of semi‐volatile compounds. Applying Equation 3 for those variables for
FIREX‐AQ will be more complicated, as the spacing of the DC‐8 sampling transects along the plume length
do not reflect a 1:1 increase in both smoke age and sampling time interval. Figure S3 demonstrates that this
ratio varies from 0.8–6.4 across the FIREX‐AQwildfires. In most cases, the time it takes the aircraft to sample
successive downwind portions of the plume is considerably shorter than the time it takes for the plume to be
advected over the intervening distance, assuming straight‐line, horizontal advection.

We compute Pearson's correlation coefficients to quantify the linear proportionality between transect‐inte-
grated values of CO2, CO, and BC versus FRP as represented by Equation 4. While strong correlation coeffi-
cients would be hypothesized to indicate the governing influence of fire activity on emissions, weaker
correlation coefficients may indicate the presence of important, confounding processes such as smoke plume
dilution. The importance of dilution for driving smoke variability may also vary at specific locations within
the plume (e.g., near the edges vs. the center) in ways that are not captured by this integrated plume analysis.
Similarly, the nature of the aircraft horizontal sampling transects prevents us from examining changes in the
vertical structure of these conserved tracer species that may be impacted by boundary layer convective mix-
ing, dilution, or size‐dependent particle gravitational settling.

3. Results and Discussion
3.1. GOES FRP Diurnal Cycles

We investigate the average diurnal cycle of FRP on the scale of individual fires in the Western United States
grouped according to the dominant ecosystem represented by the burned area (Figure 1 and Table S1). The
diurnal cycle of FRP for all fires in this analysis is optimally fit using a bimodal Gaussian distribution.
Coefficients of the bimodal Gaussian distribution for all fires are tabulated in Table S1. Pearson's correlation
coefficients (r) between single‐mode Gaussian distributions and bimodal Gaussian distributions (Table S1)
demonstrate the ability to model diurnal fire activity and highlight the slight differences between single
and bimodal distributions.

Our results suggest a bimodal Gaussian distribution could improve the accuracy of the timing of fire
emissions in fire emissions inventories and smoke forecasting models. The fires tend to peak later in the
day than might be expected based on past literature (Giglio, 2007; Pack et al., 2000; Roberts et al., 2009;
Zhang & Kondragunta, 2008), but the model standard deviations of 1–2 hr are consistent with common
model assumptions.

The bimodalGaussian distribution has been observed in other ecosystems (Giglio, 2007; Pack et al., 2000). It is
unclearwhether the trough between the peaks is a truemeasure of reducedfire activity or a result of detection
bias. The contrast between fire pixels and surrounding non‐fire pixels is reduced around solar noon, and the
bimodal model fit could be an artifact of detection bias (Giglio et al., 1999). Alternatively, fire detection could
be inhibited by thick cloud or smoke cover. In the presence of clouds, higher atmospheric moisture would act
to reduce fire activity and supports our bimodal model fit. The short‐term variability in fire activity is known
to be strongly influenced by weather conditions and synoptic‐scale meteorological events (Schroeder, 1970;
Wiggins et al., 2016), and it is possible the bimodal model fit represents the fast response to changing envir-
onmental conditions.Wenote the bimodalmodelfit is specific tofires in theWesternUnited States and advise
against its application on a global scale across ecosystems with much different fire regimes.

We find the timing and magnitude of peaks in the bimodal Gaussian fit of the diurnal distribution of FRP
vary between all fires, but there are discernible differences between the ecosystems represented by the fires
analyzed. Overall, the 5‐min data reveal significant time‐varying structure in fire activity, which needs to be
accounted for when examining the fire plume characteristics across different aging time scales.

3.2. Relationships Between Integrated GOES FRP and In Situ Measurements

Our approach allows for direct comparison of satellite FRP observations with 1 Hz aircraft trace gas and
aerosol observations at an extremely high time resolution of 5‐min intervals. The strong linear
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relationship between fire‐integrated FRP and the combustion rate of biomass is well established in the
literature and is the basis for top‐down fire emissions inventories (Freeborn et al., 2008; Ichoku
et al., 2008; Wooster et al., 2003). Figure 3 shows the relationships between the relative rate of change
in transect‐integrated CO2, CO, BC, and MCE and the corresponding relative rate of change in
integrated FRP observations from GOES.

It is clear that the DC‐8 was able to sample fire emissions from periods when the fire activity was both wax-
ing (∂ln(FRP)/∂t > 0) and waning (∂ln(FRP)/∂t < 0). While many fires were sampled during periods of
increasing fire activity where both increasing FRP and plume dilution serve to reduce concentrations of con-
served tracers during downwind flight legs (relative to the earlier legs), some fires (e.g., Shady on 25 July and
Sheridan on 16 August) exhibited a decrease in FRP over time. An example of a fire sampled during periods
of increasing FRP is given in Figure 2 for Williams Flats fire, and a counterexample of a fire sampled during

Figure 3. The relative rate of change in CO2 (a), CO (b), BC (c), and MCE (d) versus the time aligned relative rate of
change in GOES FRP. Colors are used to distinguish landcover types with light green representing a mixture of
grass/shrubland and forest/woodland, dark green forests/woodlands, and grey grass/shrubland. Dotted black lines show
zero change for the x and y axis as a reference.
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decreasing FRP is shown in Figure S2 for the Sheridan fire. The plume peak time series shown in Figures 2
and S2 highlights the importance of the FRP trend as a governing influence on plume evolution. In Figure 2,
the decrease in peak areas with increasing downwind distance is characteristic of plume dilution, while the
lack of a decrease shown in Figure S2 implies that the plume is not diluting. It is only with the important
context provided by the FRP time series that changing fire activity, rather than dilution, be considered as
the primary driver of these starkly contrasting plume trends.

We uncover strong linear correlations (r > 0.8) between the relative rate of change in FRP and the relative
rate of change in both CO2 and MCE (Table 1). Figure 3 highlights the exceptionally strong correlation
between the rate at which FRP changes with time and the resulting relative temporal change in CO2 mixing
ratio observed by the DC‐8 downwind (Panel A). The strong correlations between FRP and CO2 and MCE
are likely because fire carbon emissions are composed of 80–90% CO2 (Andreae & Merlet, 2001). The corre-
lations remain strong (r> 0.8) on days with plentiful GOES detections to inform the diurnal cycle of FRP and
also on days with scarce GOES detections when the bimodal Gaussian model fit to the average diurnal FRP
cycle was relied on heavily. Smoke age did not have a discernible influence on the correlations over the range
of FIREX‐AQ variability (<6 hr old). The correlation weakens slightly when FRP and CO2 are both decreas-
ing, which may be due to the coincident influence of dilution on conserved smoke tracer concentrations.
However, if dilution were playing a dominant role, we might expect to see a different slope for these fires
in Figure 3a as the dilution process changes ∂ln(CO2)/∂t without changing ∂ln(FRP)/∂t. Unraveling the fin-
gerprints of FRP changes versus dilution on plume concentrations may best be done using plume‐scale mod-
els that are able to resolve both of these processes or by looking at the local turbulence observations from the
aircraft that may be related to dilution mixing processes.

The correlation with the relative rate of change in FRP weakens slightly for CO and BC compared to CO2.
This may reflect the confounding influences of the fire properties on the emission of these incomplete com-
bustion products (although not so much explained by the relative rate of change in MCE). While BC aerosols
are also subject to plume processes such as coagulation that reduce their number concentration beyond what
would be attributable to dilution with background air alone, the mass concentrations reported here should
be largely conserved over the early hours of the plume. Limitations of this analysis include the lack of in situ
measurements that span the vertical length of the plume and the potential of horizontal heterogeneity in the
distribution of emissions in the plume. Light Detection And Ranging (LIDAR)‐derivedmeasurements of ver-
tical bulk aerosol extinction could offer an opportunity to explore the vertical distribution of emissions and
the role of boundary layer dynamics on plume extent.

4. Summary and Conclusions
We present a new method for linking changes in conserved emissions tracers to changes in the high
time‐resolution satellite observations of FRP. The technique is used to interpret the comprehensive airborne
data set from the NASA FIREX‐AQ mission in summer, 2019. These unique data demonstrate the need
for and the power of satellite observations for disentangling the impacts of dilution, atmospheric processing,
and changing fire activity on fire emissions observed in smoke plumes. Our results suggest smoke forecast
and fire emissions models could leverage assimilation of high time‐resolution GOES FRP observations to
significantly improve their ability to temporally distribute emissions. The strong relationships between the
relative rate of change in FRP and CO2 (r > 0.9) can also be exploited in smoke forecasting and emissions
models, as it provides a connection to other trace gas and aerosol emissions. While fire emissions are com-
monlymodeled as a single, Gaussianmode, we show that this representation is oversimplified andwould fail
to capture themulti‐peak structure of the diverse FIREX‐AQ fires. The results from this study also imply that
high time‐resolution GOES FRP observations can be used as a tool to tease apart the influence of changing
fire behavior from downwind plume processing when interpreting airborne campaign measurements. The
variation in FRP over the time period represented by smoke plumes is an important factor in understanding
smoke evolution along the length of a plume and should be considered along with dilution and atmospheric
processing.We demonstrate the strong connection between FRP andCO2, which suggests that changes infire
activity govern the near‐field plume concentrations more so than dilution. Combining airborne measure-
ments with satellite FRP is a powerful analysis tool for accounting for the influence of changing fire activity
on plume observations and their downwind evolution.
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Data Availability Statement

All data are publicly available from the NASA FIREX‐AQ data archive (https://doi.org/10.5067/suborbital/
firexaq2019/data001).

References
Abatzoglou, J. T., &Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the

National Academy of Sciences of the United States of America, 113, 11,770–11,775. https://doi.org/10.1073/pnas.1607171113
Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., & Pierce, B. (2017). International Geoscience and Remote Sensing Symposium

(IGARSS). In Institute of Electrical and Electronics Engineers Inc. (Eds.), Using VIIRS fire radiative power data to simulate biomass
burning emissions, plume rise and smoke transport in a real‐time air quality modeling system (Vol. 2017‐July, pp. 2806–2808). Fort Worth,
TX. https://doi.org/10.1109/IGARSS.2017.8127581

Albini, F. A., & Reinhardt, E. D. (1995). Modeling ignition and burning rate of large woody natural fuels. International Journal of Wildland
Fire, 5(2), 81–91. https://doi.org/10.1071/WF9950081

Andela, N., Kaiser, J. W., van der Werf, G. R., & Wooster, M. J. (2015). New fire diurnal cycle characterizations to improve fire radiative
energy assessments made fromMODIS observations.Atmospheric Chemistry and Physics, 15, 8831–8846. https://doi.org/10.5194/acp‐15‐
8831‐2015

Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4),
955–966. https://doi.org/10.1029/2000GB001382

Balch, J. K., Bradley, B. A., D'Antonio, C. M., & Gómez‐Dans, J. (2013). Introduced annual grass increases regional fire activity across the
arid western USA (1980–2009). Global Change Biology, 19, 173–183. https://doi.org/10.1111/gcb.12046

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., & Deangelo, B. J. (2013). Bounding the role of black carbon in the
climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552. https://doi.org/10.1002/
jgrd.50171

Bradshaw, L. S., Deeming, J. E., Burgan, R. E., & Cohen, J. D. (1983). The 1978 National Fire‐Danger Rating System: Technical documen-
tation, USDA Forest Service General Technical Report INT (Vol. 169). Missoula, MT: United States Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment Station. Retrieved from https://www.fs.fed.us/rm/pubs_int/int_gtr169.pdf

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., & Ichoku, C. (2008). Relationships between energy
release, fuel mass loss, and trace gas an aerosol emissions during laboratory biomass fires. Journal of Geophysical Research, 113, D01301.
https://doi.org/10.1029/2007JD008679

Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment,
108(4), 407–421. https://doi.org/10.1016/j.rse.2006.11.018

Giglio, L., Kendall, J. D., & Justice, C. O. (1999). Evaluation of global fire detection algorithms using simulated AVHRR infrared data.
International Journal of Remote Sensing, 20(10), 1947–1985. https://doi.org/10.1080/014311699212290

Goldammer, J. G., Statheropoulos, M., & Andreae, M. O. (2008). Chapter 1 impacts of vegetation fire emissions on the environment, human
health, and security: A global perspective. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Developments in
environmental science, Wildland Fires and Air Pollution (Vol. 8, pp. 3–36). Amsterdam, The Netherlands: Elsevier. https://doi.org/
10.1016/S1474‐8177(08)00001‐6

Hammer, R. B., Stewart, S. I., & Radeloff, V. C. (2009). Demographic trends, the wildland‐urban interface, and wildfire management.
Society and Natural Resources, 22(8), 777–782. https://doi.org/10.1080/08941920802714042

Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C., & Morgan, P. (2011). The combustion of sound and rotten coarse woody debris:
A review. International Journal of Wildland Fire, 20, 163. https://doi.org/10.1071/WF09113

Ichoku, C., & Ellison, L. (2014). Global top‐down smoke‐aerosol emissions estimation using satellite fire radiative power measurements.
Atmospheric Chemistry and Physics, 14, 6643–6667. https://doi.org/10.5194/acp‐14‐6643‐2014

Ichoku, C., Giglio, L., Wooster, M. J., & Remer, L. A. (2008). Global characterization of biomass‐burning patterns using satellite mea-
surements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. https://doi.org/10.1016/j.rse.2008.02.009

Jaffe, D., Hafner, W., Chand, D., Westerling, A., & Spracklen, D. (2008). Interannual variations in PM2.5 due to wildfires in the Western
United States. Environmental Science and Technology, 42(8), 2812–2818. https://doi.org/10.1021/es702755v

Kaiser, J. W., Flemming, J., Schultz, M. G., Suttie, M., & Wooster, M. J. (2009). The MACC Global Fire Assimilation System: First emission
products (GFASv0). Retrieved from http://www.ecmwf.int/publications/

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., & Jones, L. (2012). Biomass burning emissions estimated with a global
fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. https://doi.org/10.5194/bg‐9‐527‐2012

Kasischke, E. S., & Penner, J. E. (2004). Improving global estimates of atmospheric emissions from biomass burning. Journal of Geophysical
Research, 109, D14S01. https://doi.org/10.1029/2004JD004972

Kerns, B. K., Tortorelli, C., Day, M. A., Nietupski, T., Barros, A. M. G., Kim, J. B., & Krawchuk, M. A. (2020). Invasive grasses: A new perfect
storm for forested ecosystems?Forest Ecology and Management, 463, 117985. https://doi.org/10.1016/j.foreco.2020.117985

Kochi, I., Donovan, B., H, G., Champ, P. A., & Loomis, J. B. (2010). The economic cost of adverse health effects from wildfire‐smoke
exposure: A review. International Journal of Wildland Fire, 19(7), 803–817. https://doi.org/10.1071/WF09077

Langmann, B., Duncan, B., Textor, C., Trentmann, J., & van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air
pollution and climate. Atmospheric Environment, 43(1), 107–116. https://doi.org/10.1016/j.atmosenv.2008.09.047

Larkin, N. K., Raffuse, S. M., & Strand, T. M. (2014). Wildland fire emissions, carbon, and climate: U.S. emissions inventories. Forest Ecology
and Management, 317, 61–69. https://doi.org/10.1016/j.foreco.2013.09.012

Li, F., Val Martin, M., Andreae, M. O., Arneth, A., Hantson, S., & Kaiser, J. W. (2019). Historical (1700–2012) global multi‐model estimates
of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 19, 12,545–12,567.
https://doi.org/10.5194/acp‐19‐12545‐2019

Li, F., Zhang, X., Kondragunta, S., & Csiszar, I. (2018). Comparison of fire radiative power estimates from VIIRS and MODIS observations.
Journal of Geophysical Research: Atmospheres, 123, 4545–4563. https://doi.org/10.1029/2017JD027823

Li, F., Zhang, X., Kondragunta, S., Schmidt, C. C., & Holmes, C. D. (2020). A preliminary evaluation of GOES‐16 active fire product using
Landsat‐8 and VIIRS active fire data, and ground‐based prescribed fire records. Remote Sensing of Environment, 237, 111600. https://doi.
org/10.1016/j.rse.2019.111600

10.1029/2020GL090707Geophysical Research Letters

WIGGINS ET AL. 10 of 12

Acknowledgments
This work was supported by the NASA
Tropospheric Chemistry Program
managed by Dr. Barry Lefer. E. B. W. is
supported by a NASA Postdoctoral
Program Fellowship. J. M. K. and J. P. S.
are supported by NOAA. We thank the
FIREX‐AQ project scientists Jim
Crawford, Carsten Warneke, and Jack
Dibb, as well as the pilots and crew of
the NASA DC‐8.

https://doi.org/10.5067/suborbital/firexaq2019/data001
https://doi.org/10.5067/suborbital/firexaq2019/data001
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1109/IGARSS.2017.8127581
https://doi.org/10.1071/WF9950081
https://doi.org/10.5194/acp-15-8831-2015
https://doi.org/10.5194/acp-15-8831-2015
https://doi.org/10.1029/2000GB001382
https://doi.org/10.1111/gcb.12046
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1002/jgrd.50171
https://www.fs.fed.us/rm/pubs_int/int_gtr169.pdf
https://doi.org/10.1029/2007JD008679
https://doi.org/10.1016/j.rse.2006.11.018
https://doi.org/10.1080/014311699212290
https://doi.org/10.1016/S1474-8177(08)00001-6
https://doi.org/10.1016/S1474-8177(08)00001-6
https://doi.org/10.1080/08941920802714042
https://doi.org/10.1071/WF09113
https://doi.org/10.5194/acp-14-6643-2014
https://doi.org/10.1016/j.rse.2008.02.009
https://doi.org/10.1021/es702755v
http://www.ecmwf.int/publications/
https://doi.org/10.5194/bg-9-527-2012
https://doi.org/10.1029/2004JD004972
https://doi.org/10.1016/j.foreco.2020.117985
https://doi.org/10.1071/WF09077
https://doi.org/10.1016/j.atmosenv.2008.09.047
https://doi.org/10.1016/j.foreco.2013.09.012
https://doi.org/10.5194/acp-19-12545-2019
https://doi.org/10.1029/2017JD027823
https://doi.org/10.1016/j.rse.2019.111600
https://doi.org/10.1016/j.rse.2019.111600


Li, F., Zhang, X., Roy, D. P., & Kondragunta, S. (2019). Estimation of biomass‐burning emissions by fusing the fire radiative power retrievals
from polar‐orbiting and geostationary satellites across the conterminous United States. Atmospheric Environment, 211, 274–287. https://
doi.org/10.1016/j.atmosenv.2019.05.017

Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., & Bell, M. L. (2015). A systematic review of the physical health impacts from
non‐occupational exposure to wildfire smoke. Environmental Research, 136, 120–132. https://doi.org/10.1016/j.envres.2014.10.015

Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif, M. T., & Karambelas, A. (2020). Diagnosing spatial biases and
uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sensing of Environment, 237, 111557. https://
doi.org/10.1016/j.rse.2019.111557

Loehman, R. A., Reinhardt, E., & Riley, K. L. (2014). Wildland fire emissions, carbon, and climate: Seeing the forest and the trees—A
cross‐scale assessment of wildfire and carbon dynamics in fire‐prone, forested ecosystems. Forest Ecology and Management, 317, 9–19.
https://doi.org/10.1016/j.foreco.2013.04.014

Lu, X., Zhang, L., Yue, X., Zhang, J., Jaffe, D. A., & Stohl, A. (2016). Wildfire influences on the variability and trend of summer surface
ozone in the mountainous western United States. Atmospheric Chemistry and Physics, 16, 14,687–14,702. https://doi.org/10.5194/acp‐
16‐14687‐2016

Mell, W. E., Manzello, S. L., Maranghides, A., Butry, D., & Rehm, R. G. (2010). The wildland–urban interface fire problem—Current
approaches and research needs. International Journal of Wildland Fire, 19, 238. https://doi.org/10.1071/WF07131

Menakis, J. P., Osborne, D., & Melanie, M. (2003). Fire, fuel treatments and ecological restoration: Conference proceedings. In USDA
Forest Service Proceedings (pp. 281–287).

Mota, B., &Wooster, M. J. (2018). A new top‐down approach for directly estimating biomass burning emissions and fuel consumption rates
and totals from geostationary satellite fire radiative power (FRP). Remote Sensing of Environment, 206, 45–62. https://doi.org/10.1016/j.
rse.2017.12.016

Mu, M., Randerson, J. T., Van Der Werf, G. R., Giglio, L., Kasibhatla, P., & Morton, D. (2011). Daily and 3‐hourly variability in global fire
emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 116, D24303.
https://doi.org/10.1029/2011JD016245

Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., & Prichard, S. J. (2007). An overview of the Fuel Characteristic Classification System—
Quantifying, classifying, and creating fuelbeds for resource planning. Special Forum on the Fuel Characteristic Classification System.
Canadian Journal of Forest Research, 37(12), 2383–2393. https://doi.org/10.1139/X07‐077

Pack, D. W., Rice, C. J., Tressel, B. J., Lee‐Wagner, C. J., & Oshika, E. M. (2000). Civilian uses of surveillance satellites. Crosslink, 1(1), 2–8.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., & Colarco, P. (2020). Six global biomass burning emission datasets: Intercomparison

and application in one global aerosolmodel.Atmospheric Chemistry and Physics, 20(2), 969–994. https://doi.org/10.5194/acp‐20‐969‐2020
Pierce, R. B., Schaack, T., al‐Saadi, J. A., Fairlie, T. D., Kittaka, C., Lingenfelser, G., et al. (2007). Chemical data assimilation estimates of

continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. Journal of
Geophysical Research, 112, D12S21. https://doi.org/10.1029/2006JD007722

Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke
exposure. Environmental Health Perspectives, 124, 1334–1343. https://doi.org/10.1289/ehp.1409277

Roberts, G., Wooster, M. J., & Lagoudakis, E. (2009). Annual and diurnal african biomass burning temporal dynamics. Biogeosciences, 6(5),
849–866. https://doi.org/10.5194/bg‐6‐849‐2009

Sachse, G. W., Collins, J. E. Jr., Hill, G. F., Wade, L. O., Burney, L. G., & Ritter, J. A. (1991). Airborne tunable diode laser sensor for
high‐precision concentration and flux measurements of carbon monoxide and methane. Measurement of Atmospheric Gases, 1433,
157–166. https://doi.org/10.1117/12.46162

Saide, P. E., Peterson, D. A., da Silva, A., Anderson, B., Ziemba, L. D., & Diskin, G. (2015). Revealing important nocturnal and day‐to‐day
variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 42, 3609–3618. https://doi.org/
10.1002/2015GL063737

Schmidt, C. (2019). Monitoring fires with the GOES‐R series. In The GOES‐R series: A new generation of geostationary environmental
satellites (pp. 145–163). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978‐0‐12‐814327‐8.00013‐5

Schroeder, M. J. (1970). Fire weather: A guide for application of meteorological information to forest fire control operations, agriculture
handbook, 360. Washington, DC: US Department of Agriculture, Forest Service.

Shi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y., & Chen, X. (2015). Comparison of global inventories of CO2 emissions from biomass
burning during 2002‐2011 derived from multiple satellite products. Environmental Pollution, 206, 479–487. https://doi.org/10.1016/j.
envpol.2015.08.009

Sommers, W. T., Loehman, R. A., & Hardy, C. C. (2014). Wildland fire emissions, carbon, and climate: Science overview and knowledge
needs. Forest Ecology and Management, 317, 1–8. https://doi.org/10.1016/j.foreco.2013.12.014

Stavros, E. N., Abatzoglou, J., Larkin, N. K., McKenzie, D., & Steel, E. A. (2014). Climate and very large wildland fires in the contiguous
western USA. International Journal of Wildland Fire, 23, 899. https://doi.org/10.1071/WF13169

Theobald, D. M., & Romme, W. H. (2007). Expansion of the US wildland‐urban interface. Landscape and Urban Planning, 83(4), 340–354.
https://doi.org/10.1016/j.landurbplan.2007.06.002

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., & Carmona‐Moreno, C. (2010). The influence of vegetation, fire spread
and fire behaviour on biomass burning and trace gas emissions: Results from a process‐based model. Biogeosciences, 7(6), 1991–2011.
https://doi.org/10.5194/bg‐7‐1991‐2010

Urbanski, S. (2014). Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecology and Management, 317, 51–60. https://
doi.org/10.1016/j.foreco.2013.05.045

van derWerf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., & Rogers, B. M. (2017). Global fire emissions estimates during
1997–2016. Earth System Science Data, 9(2), 697–720. https://doi.org/10.5194/essd‐9‐697‐2017

Vay, S. A., Woo, J. H., Anderson, B. E., Thornhill, K. L., Blake, D. R., Westberg, D. J., et al. (2003). Influence of regional‐scale anthropogenic
emissions on CO2 distributions over the western North Pacific. Journal of Geophysical Research, 108(D20), 8801. https://doi.org/10.1029/
2002JD003094

Walters, S. P., Schneider, N. J., & Guthrie, J. D. (2011). Geospatial Multi‐Agency Coordination (GeoMAC) wildland fire perimeters, 2008.
U.S. Geological Survey Data Series, 612, 6.

Ward, D. E., & Radke, L. F. (1993). Emissions measurements from vegetation fires: A comparative evaluation of methods and results. In
P. J. Crutzen, J. G. Goldammer (Eds.), Fire in the environment: The ecological, atmosheric, and climatic importance of vegetation fires
(Dahlem Wor, pp. 53–76). Chischester, England: John Wiley & Sons.

10.1029/2020GL090707Geophysical Research Letters

WIGGINS ET AL. 11 of 12

https://doi.org/10.1016/j.atmosenv.2019.05.017
https://doi.org/10.1016/j.atmosenv.2019.05.017
https://doi.org/10.1016/j.envres.2014.10.015
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1016/j.foreco.2013.04.014
https://doi.org/10.5194/acp-16-14687-2016
https://doi.org/10.5194/acp-16-14687-2016
https://doi.org/10.1071/WF07131
https://doi.org/10.1016/j.rse.2017.12.016
https://doi.org/10.1016/j.rse.2017.12.016
https://doi.org/10.1029/2011JD016245
https://doi.org/10.1139/X07-077
https://doi.org/10.5194/acp-20-969-2020
https://doi.org/10.1029/2006JD007722
https://doi.org/10.1289/ehp.1409277
https://doi.org/10.5194/bg-6-849-2009
https://doi.org/10.1117/12.46162
https://doi.org/10.1002/2015GL063737
https://doi.org/10.1002/2015GL063737
https://doi.org/10.1016/B978-0-12-814327-8.00013-5
https://doi.org/10.1016/j.envpol.2015.08.009
https://doi.org/10.1016/j.envpol.2015.08.009
https://doi.org/10.1016/j.foreco.2013.12.014
https://doi.org/10.1071/WF13169
https://doi.org/10.1016/j.landurbplan.2007.06.002
https://doi.org/10.5194/bg-7-1991-2010
https://doi.org/10.1016/j.foreco.2013.05.045
https://doi.org/10.1016/j.foreco.2013.05.045
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.1029/2002JD003094
https://doi.org/10.1029/2002JD003094


Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase Western U.S. forest wildfire
activity. Science, 313(5789), 940–943. https://doi.org/10.1126/science.1128834

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al‐Saadi, J. A., Orlando, J. J., & Soja, A. J. (2011). The Fire INventory from
NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3),
625–641. https://doi.org/10.5194/gmd‐4‐625‐2011

Wiggins, E. B., Veraverbeke, S., Henderson, J. M., Karion, A., Miller, J. B., Lindaas, J., et al. (2016). The influence of daily meteorology on
boreal fire emissions and regional trace gas variability. Journal of Geophysical Research: Biogeosciences, 121, 2793–2810. https://doi.org/
10.1002/2016JG003434

Wooster, M. J., Zhukov, B., & Oertel, D. (2003). Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD
experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107. https://doi.org/10.1016/
S0034‐4257(03)00070‐1

Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 pollution extremes caused by wildfires over the western United States during
2017‐2018. Geophysical Research Letters, 47, e2020GL089429. https://doi.org/10.1029/2020GL089429

Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W., et al. (2007). The tropical forest and fire emissions
experiment: Overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 7(19), 5175–5196. https://
doi.org/10.5194/acp‐7‐5175‐2007

Zhang, X., & Kondragunta, S. (2008). Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire
product. Remote Sensing of Environment, 112(6), 2886–2897. https://doi.org/10.1016/j.rse.2008.02.006

Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., & Huang, H. C. (2012). Near‐real‐time global biomass burning emissions product from
geostationary satellite constellation. Journal of Geophysical Research, 117, D14201. https://doi.org/10.1029/2012JD017459

10.1029/2020GL090707Geophysical Research Letters

WIGGINS ET AL. 12 of 12

https://doi.org/10.1126/science.1128834
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.1002/2016JG003434
https://doi.org/10.1002/2016JG003434
https://doi.org/10.1016/S0034-4257(03)00070-1
https://doi.org/10.1016/S0034-4257(03)00070-1
https://doi.org/10.1029/2020GL089429
https://doi.org/10.5194/acp-7-5175-2007
https://doi.org/10.5194/acp-7-5175-2007
https://doi.org/10.1016/j.rse.2008.02.006
https://doi.org/10.1029/2012JD017459

